Resource logo with tagline

ENEOS to develop commercial scale LOHC project

ENEOS will use technology from Honeywell to develop a commercial scale liquid organic hydrogen carrier project.

Honeywell today announced that ENEOS, a leading energy company in Japan, will develop the world’s first commercial scale Liquid Organic Hydrogen Carrier (LOHC) project using Honeywell’s solution at multiple sites.

The LOHC solution enables the long-distance transportation of clean hydrogen and can help meet the growing requirements for hydrogen use across various industries by leveraging existing refining assets and infrastructure.

“With more cost-effective long-distance transport, our Liquid Organic Hydrogen Carrier provides a method of more closely matching international supply and demand for hydrogen which enables hydrogen to play a critical role in the energy mix as we move toward lower-carbon economies,” said Ken West, president and CEO of Honeywell Energy and Sustainability Solutions, in a news release. “By providing solutions to help overcome the challenges of hydrogen transportation, Honeywell is supporting ENEOS in transitioning to a hydrogen-powered future.”

This is one of multiple hydrogen transportation projects on which Honeywell and ENEOS are collaborating. In the Honeywell LOHC solution, hydrogen gas is combined chemically through the Honeywell Toluene Hydrogenation process into methylcyclohexane (MCH) – a convenient liquid carrier – compatible with existing infrastructure. The hydrogen at these sites will be exported – in the same way as petrochemical products – to ENEOS in Japan in the form of MCH. Once at its destination, the hydrogen will be recovered using the Honeywell MCH Dehydrogenation process and released for use, while the toluene can be sent back for additional cycles.

Hydrogen is expected to play a critical role in reducing greenhouse gas emissions. At standard conditions, hydrogen is a flammable gas with low density and cannot be efficiently or easily transported. Current solutions available for transporting hydrogen include liquifying the hydrogen and using chemical carriers such as ammonia, each of which requires additional infrastructure to produce and transport hydrogen.

Unlock this article

The content you are trying to view is exclusive to our subscribers.
To unlock this article:

You might also like...

exclusive

Inside Intersect Power’s green hydrogen plans

California-based renewable energy developer Intersect Power anticipates huge capital needs for a quartet of regional energy complexes co-locating wind and solar with green hydrogen production in the Texas Gulf Coast, California and the American West.

Read More »

Welcome Back

Get Started

Sign up for a free 15-day trial and get the latest clean fuels news in your inbox.